若椭圆C:上有一动点P,P到椭圆C的两焦点 F1,F2的距离之和等于2,△PF1F2的面积最大值为1(I)求椭圆的方程(II)若过点M(2,0)的直线l与椭圆C交于不同两点A、B,(O为坐标原点)且| ,求实数t的取值范围.
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形 (1)求证:AD^BC (2)求二面角B-AC-D的大小 (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若 不存在,说明理由.
已知函数 (1)讨论函数f (x)的极值情况; (2)设g (x) =" ln(x" + 1),当x1>x2>0时,试比较f (x1 – x2)与g (x1 – x2)及g (x1) –g (x2)三者的大小;并说明理由.
如图所示,在直三棱柱中,,,,,点是棱的中点. (Ⅰ)证明:平面AA1C1C平面; (Ⅱ)求二面角的余弦值.
设,函数 (Ⅰ)若是函数的极值点,求实数的值; (Ⅱ)若函数在上是单调减函数,求实数的取值范围.
已知为空间的一个基底,且, ,, (1)判断四点是否共面; (2)能否以作为空间的一个基底?若不能,说明理由;若能,试以这一基底表示向量