(本题13分)如图,某小区准备在一直角围墙ABC内的空地上植造一块“绿地△ABD”,其中AB长为定值,BD可长根据需要进行调节(BC足够长)。现规划在△ABD的内接正方形BEFG内种花,其余地方种草,且把种草的面积与种花的面积的比值称为“草花比y”。(1)设,将表示成的函数关系式;(2)当BE为多长时,有最小值?最小值是多少?
(本小题满分10分)在中,内角所对的边分别为,若. (1)求证:成等比数列;(2)若,求的面积.
(本小题满分14分)设函数, (1)证明:是上的增函数; (2)设,当时,恒成立,求的取值范围.
(本小题满分12分)已知椭圆:上任意一点到两焦点距离之和为,离心率为,动点在直线上,过作直线的垂线,设交椭圆于点. (1)求椭圆的标准方程; (2)证明:直线与直线的斜率之积是定值;
(本小题满分12分)在长方体中,,.点是线段上的动点,点为的中点. (1)当点是中点时,求证:直线∥平面; (2)若二面角的余弦值为,求线段的长.
(本小题满分12分)已知函数的图象过点,且点在函数的图象上. (1)求数列的通项公式; (2)令,若数列的前项和为,求证:.