计算:.
(本小题满分12分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.
(本小题满分14分)已知O为坐标原点,抛物线与轴相交于点,.与轴交于点C,且O,C两点之间的距离为3,,,点A,C在直线上.(1)求点C的坐标;(2)当随着的增大而增大时,求自变量的取值范围;(3)将抛物线向左平移个单位,记平移后随着的增大而增大的部分为P,直线向下平移n个单位,当平移后的直线与P有公共点时,求的最小值.
(本小题满分14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.
(本小题满分12分)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求与的面积之比.
(本小题满分12分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入件合格品后,进行如下试验:随机抽取1件进行检测,然后放回, 多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算 出的值大约是多少?