如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交于M、N。(1)试说明:FG=(AB+BC+AC);(2)①如图(2),BD、CE分别是△ABC的内角平分线;②如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线。则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由。
在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:.)
解不等式组:.
计算:;
如图,已知平面直角坐标系中,点,为两动点,其中,连结,. (1)求证:; (2)当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式; (3)在(2)的条件下,设直线交轴于点,过点作直线交抛物线于两点,问是否存在直线,使?若存在,求出直线对应的函数关系式;若不存在,请说明理由.
已知等腰中,,平分交于点,在线段上任取一点(点除外),过点作,分别交于点,作,交于点,连结. (1)求证:四边形为菱形; (2)当点在何处时,菱形的面积为四边形面积的一半?