借助“世博会”的东风,某小商品公司开发一种纪念品,每件产品的成本是15元,销售价是20元,月平均销售件,通过改进工艺,产品的成本不变,质量得到提高,市场分析的结果表明:如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后,该公司销售纪念品的月平均利润是元.(1)写出与的函数关系式;(2)改进工艺后,试确定该纪念品的销售价,使得公司销售该纪念品的月平均利润最大.
(满分10分) 已知,求下列各式的值:(1)(2)
(满分12分) 已知函数的最大值为,最小值为,求函数的最值.
(本小题满分14分) 已知函数,如果存在给定的实数对(),使得恒成立,则称为“S-函数”. (Ⅰ)判断函数是否是“S-函数”; (Ⅱ)若是一个“S-函数”,求出所有满足条件的有序实数对; (Ⅲ)若定义域为的函数是“S-函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.
(本小题满分13分) 已知的顶点A、B在椭圆 (Ⅰ)当AB边通过坐标原点O时,求AB的长及的面积; (Ⅱ)当,且斜边AC的长最大时,求AB所在直线的方程.
(本小题满分14分) 已知函数, (Ⅰ)若时,求曲线在点处的切线方程; (Ⅱ)若函数在上是减函数,求实数的取值范围; (Ⅲ)令,是否存在实数,当(是自然对数的底)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由.