借助“世博会”的东风,某小商品公司开发一种纪念品,每件产品的成本是15元,销售价是20元,月平均销售件,通过改进工艺,产品的成本不变,质量得到提高,市场分析的结果表明:如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后,该公司销售纪念品的月平均利润是元.(1)写出与的函数关系式;(2)改进工艺后,试确定该纪念品的销售价,使得公司销售该纪念品的月平均利润最大.
已知函数().(1)若,当时,求的单调递减区间;(2)若函数有唯一的零点,求实数的取值范围.
如图,圆与轴相切于点,与轴正半轴相交于两点(点在点的下方),且.(Ⅰ)求圆的方程;(Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:.
某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:
(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中)
如图,在直三棱柱中,底面是正三角形,点是中点,,.(Ⅰ)求三棱锥的体积;(Ⅱ)证明:.
已知等比数列的各项均为正数,,公比为;等差数列中,,且的前项和为,.(1)求与的通项公式;(2)设数列满足,求的前项和.