如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.⑴画出对称中心E,并写出点E、A、C的坐标;⑵P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为(a+6, b+2),请画出上述平移后的,并写出点、的坐标;⑶判断和的位置关系(直接写出结果).
商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答: (1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少? (2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?
如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM于点D,交BN于点C, (1)求证:OD∥BE; (2)如果OD=6cm,OC=8cm,求CD的长; (3)若F为CD的中点,连OF,试确定OF与CD的数量关系,并说明理由.
如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E. (1)∠E= 度; (2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE的长.
已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+=0的两个实数根. (1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长; (2)若AB的长为2,那么▱ABCD的周长是多少?
已知x=,求代数式的值.