如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).⑴求b的值.⑵求x1•x2的值⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.
已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.
“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?
如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,点E从点C出发沿射线CA以每秒2cm的速度运动,同时点F从点B出发沿射线BC以每秒1cm的速度运动.设运动时间为t秒.(1)填空:AB= cm;(2)若0<t<5,试问:t为何值时,以E、C、F为顶点的三角形与△ABC相似;(3)若∠ACB的平分线CG交△ECF的外接圆于点G.试探究在整个运动过程中,CE、CF、CG之间存在的数量关系,并说明理由.
如图,“和谐号”高铁列车的小桌板收起时,小桌板的支架底端与桌面顶端的距离OA=75厘米,且可以近似看作与地面垂直.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
学校举行数学知识竞赛,设立了一、二、三等奖,计划共购买45件奖品,其中二等奖奖品件数比一等奖奖品件数的2倍还少5件,已知购买一等奖奖品x件.各种奖品的单价如下表.
(1)学校购买二等奖奖品 件,三等奖奖品 件;(用含x的代数式表示)(2)若购买三等奖奖品的费用不超过二等奖奖品费用的2倍,学校为节省开支,应如何购买这三种奖品?总费用最少是多少元?