如图,反比例函数y=的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1。(1)求B点的坐标;(2)若直线y=2x+m平分矩形OABC面积,求m的值。
图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′. (1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=°; (2)当BA′与⊙O相切时,如图2,求折痕的长: (3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC. (1)求证:EF是⊙O的切线; (2)求证:AC2=AD•AB; (3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n). (1)求反比例函数的解析式; (2)请直接写出当x<m时,y2的取值范围.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1. (1)画出△A1OB1; (2)在旋转过程中点B所经过的路径长为 (3)求在旋转过程中线段AB、BO扫过的图形的面积之和.
如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C (1)求证:CB∥MD; (2)若BC=4,sinM=,求⊙O的直径.