某高校在2012年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组,第二组,第三组,第四组,第五组得到的频率分布直方图如图所示,(1)求第三、四、五组的频率;(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试。(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率。
已知函数. (Ⅰ)求函数的单调递减区间; (Ⅱ)若关于x的不等式恒成立,求整数的最小值.
已知直线与椭圆相交于两个不同的点,记与轴的交点为. (Ⅰ)若,且,求实数的值; (Ⅱ)若,求面积的最大值,及此时椭圆的方程.
某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据). (Ⅰ)求样本容量n和频率分布直方图中y的值; (Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在的概率.
如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且. (1)证明:平面平面; (2)求三棱锥的体积.
在中,已知. (Ⅰ)求sinA与角B的值; (Ⅱ)若角A,B,C的对边分别为的值.