某高校在2012年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组,第二组,第三组,第四组,第五组得到的频率分布直方图如图所示,(1)求第三、四、五组的频率;(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试。(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率。
(本小题满分15分)在数列中,已知,其前n项和满足 .(1)求的值;(2)求数列的通项公式;(3)令 ,试求一个函数,使得对于任意正整数n, ,且对于任意的,均存在,使得时, .
(本小题满分12分)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克.如何合理安排生产计划 ,使公司可获得最大利润?最大利润为多少?
(本小题满分15分)已知数列的首项,,.(1)求数列的通项公式;(2)求数列的前n项和;(3)求证:,.
(本小题满分14分)已知函数(Ⅰ)当时,求函数的最小值;(Ⅱ)若对任意,恒成立,试求实数的取值范围
(本小题满分12分)已知命题p:∀x∈[1,2],x2-a0.命题q:∃x0∈R,使得x02+(a-1)x0+1=0.若“p或q”为真,“p且q”为假,求实数a的取值范围.