先化简:,当时,再从-2<<2的范围内选取一个合适的整数代入求值.
计算:(1);(2)
分解因式(1)ax4-16a;(2)(x2 —5)2- 8(x2 —5)+16
解不等式组,并用数轴表示其解集。
如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示);(2)若b=8,请你在抛物线上找点P,使得△PAC是直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你探索,在(1)的结论下,在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q的坐标;如果不存在,请说明理由.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系;(1)根据图中信息,说明图中点(2,0)的实际意义;(2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离;(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;