某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4。 (1)求∠POA的度数; (2)计算弦AB的长。
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点 均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1), 点C的坐标为(-3,3)。 (1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1的图形,并写出点A1的坐标; (2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形
解方程组:
(本小题满分14分)已知二次函数 (1)当时,函数值随的增大而减小,求的取值范围。 (2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线与轴交点的横坐标均为整数,求整数的值。
(本小题满分12分)如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A、B,交x轴于点C. (1)求m的取值范围; (2)若点A的坐标是(2,-4),且=,求m的值和一次函数的解析式.