(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率;(2)决赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
(本小题满分分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学. (Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学; (Ⅱ) 测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如右图: (ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的期望及标准差(精确到0.1); (ⅱ) 若总体服从正态分布,以样本估计总体,据此,估计该年级身高在范围中的学生的人数. (Ⅲ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表: 体育锻炼与身高达标2×2列联表
(ⅰ)完成上表; (ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系? 参考公式:K=,参考数据:
(本小题满分分)设数列的前项和为,且,. (Ⅰ)求,,,并求出数列的通项公式; (Ⅱ)设数列的前项和为,试求的取值范围.
(满分12分)直线l 与抛物线y2 = 4x 交于两点A、B,O 为原点,且= -4. (I)求证:直线l 恒过一定点; (II)若 4≤| AB | ≤,求直线l 的斜率k 的取值范围; (Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ 角能否等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.
(满分12分)设f (x) 是定义在 [-1,1] 上的偶函数,f (x) 与g(x) 的图象关于x =" 1" 对称,且当x Î [2,3] 时,g(x) = a (x-2)-2 (x-2) 3(a 为常数).(Ⅰ)求f (x) 的解析式; (Ⅱ)若f (x) 在 [0,1] 上是增函数,求实数a 的取值范围; (Ⅲ)若a Î (-6,6),问能否使f (x) 的最大值为 4?请说明理由.
(满分12分)某专卖店销售一新款服装,日销售量(单位为件)f (n) 与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f (n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大. (Ⅰ)求f (n) 的表达式,及前m天的销售总数; (Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.