如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时, 教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影 子F与墙角C有13m的距离(B、F、C在一条直线上). (1)求教学楼AB的高度; (2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数). (参考数据:sin22º≈,cos22º≈,tan22º≈)
已知:如图,在平面直角坐标系中,直线与轴交于点,与反比例函数在第一象限内的图象交于点,连结,若.求该反比例函数的解析式和直线的解析式.
已知,求的值.
计算:
已知:如图,抛物线()与轴交于点( 0,4) ,与轴交于点,,点的坐标为(4,0). (1) 求该抛物线的解析式; (2) 点是线段上的动点,过点作∥,交于点,连接. 当的面积最大时,求点的坐标; (3)若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为(2,0). 问: 是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
如图,的直径为10cm,弦为6cm,的平分线交于,交于.求弦的长及的值.