如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E. (1)求证:∠OPB=∠AEC; (2)若点C为半圆的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.
已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.
下列材料来自2006年5月衢州有关媒体的真实报道:有关部 门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下: 求:①写出2005年民众安全感满意度的众数选项是_______________;②该统计表存在一个明显的错误是________________________;③若记很安全,安全,基本安全,不安全,很不安全每项分值分别为100,80,60,40,0,请估计2005年该市民众安全感满意度的平均得分
先化简,再求值:,其中a=﹣5.
已知抛物线(1)求证:不论k为任何实数,抛物线与轴总有两个交点;(2)若反比例函数的图象与的图象关于y轴对称,又与抛物线交于点A(n,-3),求抛物线的解析式;(3)若点P是(2)中抛物线上的一点,且点P到两坐标轴的距离相等,求点P的坐标.