实践与探究:如图,已知中,厘米,厘米,点为的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)用含有t的代数式表示CP(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?
先化简,再求值: ( x - 2 ) 2 - 4 x ( x - 1 ) + ( 2 x + 1 ) ( 2 x - 1 ) ,其中 x = - 2 .
计算: ( - 1 ) 2 + | - 2 | + ( π - 3 ) 0 - 4 .
已知点 A ( 1 , 0 ) 是抛物线 y = a x 2 + bx + m ( a , b , m 为常数, a ≠ 0 , m < 0 ) 与 x 轴的一个交点.
(Ⅰ)当 a = 1 , m = - 3 时,求该抛物线的顶点坐标;
(Ⅱ)若抛物线与 x 轴的另一个交点为 M ( m , 0 ) ,与 y 轴的交点为 C ,过点 C 作直线 l 平行于 x 轴, E 是直线 l 上的动点, F 是 y 轴上的动点, EF = 2 2 .
①当点 E 落在抛物线上(不与点 C 重合),且 AE = EF 时,求点 F 的坐标;
②取 EF 的中点 N ,当 m 为何值时, MN 的最小值是 2 2 ?
将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, ∠ OAB = 90 ° , ∠ B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O , B 重合).
(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;
(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t .
①如图②,若折叠后△ O ' PQ 与 ΔOAB 重叠部分为四边形, O ' P , O ' Q 分别与边 AB 相交于点 C , D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;
②若折叠后△ O ' PQ 与 ΔOAB 重叠部分的面积为 S ,当 1 ⩽ t ⩽ 3 时,求 S 的取值范围(直接写出结果即可).
在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍 0 . 7 km ,图书馆离宿舍 1 km .周末,小亮从宿舍出发,匀速走了 7 min 到食堂;在食堂停留 16 min 吃早餐后,匀速走了 5 min 到图书馆;在图书馆停留 30 min 借书后,匀速走了 10 min 返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离 ykm 与离开宿舍的时间 xmin 之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开宿舍的时间 / min
2
5
20
23
30
离宿舍的距离 / km
0.2
0.5
0.7
(Ⅱ)填空:
①食堂到图书馆的距离为 km ;
②小亮从食堂到图书馆的速度为 km / min ;
③小亮从图书馆返回宿舍的速度为 km / min ;
④当小亮离宿舍的距离为 0 . 6 km 时,他离开宿舍的时间为 min .
(Ⅲ)当 0 ⩽ x ⩽ 28 时,请直接写出 y 关于 x 的函数解析式.