如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线、. (1)求抛物线对应二次函数的解析式; (2)求证以ON为直径的圆与直线相切; (3)求线段MN的长(用k表示),并证明M、N两点到直线的距离之和等于线段MN的长.
在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率: (1)两次取的小球的标号相同 (2)两次取的小球的标号的和等于4
计算:+
如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G. (1)求证:OF•DE=OE•2OH; (2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)
如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根. (1)求抛物线的解析式; (2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD. ①当△OPC为等腰三角形时,求点P的坐标; ②求△BOD 面积的最大值,并写出此时点D的坐标.
如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立. (1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由. (2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G. ①求证:BD⊥CF; ②当AB=4,AD=时,求线段BG的长.