如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线、. (1)求抛物线对应二次函数的解析式; (2)求证以ON为直径的圆与直线相切; (3)求线段MN的长(用k表示),并证明M、N两点到直线的距离之和等于线段MN的长.
如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H试猜测线段AE和BD数量关系,并说明理由
如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠4
如图,在△ABC中,AB=AC,∠ABC=72°. (1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
如图所示,在平面直角坐标系中,M是轴正半轴上一点,⊙M与轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程的两根,ON是⊙M的切线,N为切点,N在第四象限. (1)求⊙M的直径; (2)求直线ON的函数关系式; (3)在轴上是否存在一点T,使△OTN是等腰三角形?若存在,求出T的坐标;若不存在,请说明理由.
如图,有一面积为米2的长方形鸡场,鸡场的一边靠墙(墙长米),另三边用竹篱笆围成,如果竹篱笆的长为米,求鸡场的长与宽各为多少米?