已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
如图,在锐角三角形ABC中,BC=10,BC边上的高AM=6,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点的异侧作正方形DEFG.(1)因为 ,所以△ADE∽△ABC.(2)如图1,当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(3)设DE = x,△ABC与正方形DEFG重叠部分的面积为y.①如图2,当正方形DEFG在△ABC的内部时,求关于的函数关系式,写出x的取值范围;②如图3,当正方形DEFG的一部分在△ABC的外部时,求关于的函数关系式,写出x的取值范围;③当x为何值时,y有最大值,最大值是多少?
如图,在△ABC中,∠ACB=90°,CD⊥AB, (1)图中共有 对相似三角形,写出来分别为 (不需证明);(2)已知AB=10,AC=8,请你求出CD的长;(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如下图),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点的坐标;若不存在,请说明理由.
某市为落实房地产调控政策,加快了廉租房的建设力度.第一年投资2亿元人民币建设了廉租房8万平方米,累计连续三年共投资9.5亿元人民币建设廉租房.设每年投资的增长率均为.(1)求每年投资的增长率;(2)若每年建设成本不变,求第三年建设了多少万平方米廉租房.
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.(1)证明:△ABC∽△DCA;(2)若AC=6,BC=9,求AD长.
如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,∠DEF= °,BC= , DE= ;(2)判断:△ABC与△DEF是否相似?并说明理由.