已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(1)求椭圆的标准方程;(2)求m的取值范围;(3)试用m表示△MPQ的面积S,并求面积S的最大值.
已知函数和的图象在处的切线互相平行. (Ⅰ) 求的值; (Ⅱ)设,当时,恒成立,求的取值范围.
斜率为2的直线l被双曲线=1截得的弦长为4,求直线l的方程.
设双曲线与椭圆=1有共同的焦点,且与此椭圆一个交点的纵坐标为4,求这个双曲线的方程.
求以椭圆=1的顶点为焦点,且一条渐近线的倾斜角为的双曲线方程.
△ABC中,A、B、C所对三边为a、b、c,B(-1,0)、C(1,0),求满足sinC-sinB=sinA的顶点A的轨迹.