直三棱柱中,,,,,点D在上. (1)求证:;(2)若D是AB中点,求证:AC1∥平面B1CD;(3)当时,求二面角的余弦值.
在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面,,且 (1)求证://平面; (2)求证:平面平面.
(本小题满分12分) 某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生. (1)完成下面的列联表;
(2)在喜欢运动的女生中调查她们的运动时间, 发现她们的运动时间介于30分钟到90分钟之间,如图是测量结果的频率分布直方图,若从区间段和的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.
已知锐角中,内角的对边分别为,且,. (1)求角的大小; (2)若,求的面积.
已知函数 (1)若为的极值点,求实数的值; (2)若在上为增函数,求实数的取值范围; (3)当时,方程有实根,求实数的最大值.
如图,已知椭圆:的离心率为,以椭圆的左顶点为圆心作圆:,设圆与椭圆交于点与点. (1)求椭圆的方程; (2)求的最小值,并求此时圆的方程; (3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点,为坐标原点, 求证:为定值.