晚会上,主持人面前放着A、B两个箱子,每箱均装有三个球,各箱的三个球分别标有号码1,2,3. 现主持人从A、B两箱中各摸出一球.(Ⅰ)若用x、y分别表示从A、B两箱中摸出的球的号码,请写出数对(x,y)的所有情形,并回答一共有多少种;(Ⅱ)求所摸出的两球号码之和为5的概率;(Ⅲ)如果请你猜摸出的这两球的号码之和,并且猜中有奖,那么猜什么数获奖的可能性最大?说明理由.
(本小题满分12分) 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是 (Ⅰ)求小球落入袋中的概率 (Ⅱ)在容器入口处依次放入4个小球,记X为落入袋中小球的个数,试求X=3的概率和X的数学期望.
(本小题满分13分) 如图,过抛物线(>0)的顶点作两条互相垂直的弦OA、OB ⑴设OA的斜率为k,试用k表示点A、B的坐标 ⑵求弦AB中点M的轨迹方程
(本小题满分12分) 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。 (Ⅰ)将总费用y表示为x的函数 (Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(本小题满分12分) 抛物线,直线所围成的图形的面积
(本小题满分12分) 已知函数的一个单调增区间为,求的值及函数的其他单调区间.