(本小题满分12分)已知函数的图象与轴交点的纵坐标为1,在相邻的两点,上分别取得最大值和最小值.(1) 求的解析式;(2) 若函数的最大和最小值分别为6和2,求的值.
(本小题满分12分)已知函数.(Ⅰ)当时,证明:当时,;(Ⅱ)当时,证明:.
(本小题满分12分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(1)求椭圆的标准方程; (2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.
(本小题满分12分)在年月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(1)若幸福度不低于分,则称该人的幸福度为“极幸福”,求从这人中随机选取人,至多有人是“极幸福”的概率;(2)以这人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
(本小题满分12分)如图1,在中,,分别是上的点,且.将沿折起到的位置,使,如图2.(Ⅰ)是的中点,求与平面所成角的大小;(Ⅱ)求二面角的正切值.
【改编】(本大题12分)已知数列是等差数列,其前项和为,,数列的前项和为,数列满足.(Ⅰ)求和;(Ⅱ)求数列的前项和.