同学们知道“托球赛跑”游戏吗,游戏规定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.甲乙两同学在一次比赛的结果是:甲同学由于心急,掉了球,浪费了4秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为19秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.5倍”.根据图文信息,请问哪位同学获胜?
某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题: (1)本次抽样调查的书籍有多少本?请补全条形统计图; (2)求出图1中表示文学类书籍的扇形圆心角度数; (3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
如图,已知点A(a,3)是一次函数y1=x+b图象与反比例函数y2=图象的一个交点. (1)求一次函数的解析式; (2)在y轴的右侧,当y1>y2时,直接写出x的取值范围.
先化简,再求值:(x2﹣9)÷,其中x=﹣1.
类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解 如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件. (2)问题探究 ①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。 ②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB'方向平移得到△A'B'C',连结AA',BC'.小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)? (3)应用拓展 如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD为对角线,AC=AB.试探究BC,CD,BD的数量关系.
某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系: (1)李明第几天生产的粽子数量为420只? (2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价-成本)