如图所示,在形状和大小不确定的△ABC中,BC=6,E、F分别是AB.AC的中点,P在EF或EF的延长线上,BP交CE于D,Q在CE上且BQ平分∠CBP,设BP=y,PE=x.(1)当x=EF时,求S△DPE:S△DBC的值;(2)当CQ=CE时,求y与x之间的函数关系式;(3)①当CQ=CE时,求y与x之间的函数关系式;②当CQ=CE(n为不小于2的常数)时,直接写出y与x之间的函数关系式.
如图,点 B 是反比例函数 y = 8 x ( x > 0 ) 图象上一点,过点 B 分别向坐标轴作垂线,垂足为 A , C .反比例函数 y = k x ( x > 0 ) 的图象经过 OB 的中点 M ,与 AB , BC 分别相交于点 D , E .连接 DE 并延长交 x 轴于点 F ,点 G 与点 O 关于点 C 对称,连接 BF , BG .
(1)填空: k = ;
(2)求 ΔBDF 的面积;
(3)求证:四边形 BDFG 为平行四边形.
某社区拟建 A , B 两类摊位以搞活"地摊经济",每个 A 类摊位的占地面积比每个 B 类摊位的占地面积多2平方米.建 A 类摊位每平方米的费用为40元,建 B 类摊位每平方米的费用为30元.用60平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊位个数的 3 5 .
(1)求每个 A , B 类摊位占地面积各为多少平方米?
(2)该社区拟建 A , B 两类摊位共90个,且 B 类摊位的数量不少于 A 类摊位数量的3倍.求建造这90个摊位的最大费用.
如图1,在四边形 ABCD 中, AD / / BC , ∠ DAB = 90 ° , AB 是 ⊙ O 的直径, CO 平分 ∠ BCD .
(1)求证:直线 CD 与 ⊙ O 相切;
(2)如图2,记(1)中的切点为 E , P 为优弧 AE ̂ 上一点, AD = 1 , BC = 2 .求 tan ∠ APE 的值.
已知关于 x , y 的方程组 ax + 2 3 y = - 10 3 , x + y = 4 与 x - y = 2 , x + by = 15 的解相同.
(1)求 a , b 的值;
(2)若一个三角形的一条边的长为 2 6 ,另外两条边的长是关于 x 的方程 x 2 + ax + b = 0 的解.试判断该三角形的形状,并说明理由.
如图,在 ΔABC 中,点 D , E 分别是 AB 、 AC 边上的点, BD = CE , ∠ ABE = ∠ ACD , BE 与 CD 相交于点 F .求证: ΔABC 是等腰三角形.