在极坐标系中,圆C的方程为=2sin(θ+),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)求直线l和圆C的直角坐标方程;(Ⅱ)判断直线l和圆C的位置关系.
已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.
已知复数()(1)若是实数,求的值;(2)若是纯虚数,求的值;(3)若在复平面内,所对应的点在第四象限,求的取值范围。
如图,设有双曲线,F1,F2是其两个焦点,点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积;(2)若∠F1MF2=60°,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(>0),已知过点P(-2,-4)的直线l的参数方程为:(t为参数),直线l与曲线C分别交于M,N两点.(1)写出曲线C和直线l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求的值.
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.(1)求∠ADF的度数;(2)AB=AC,求AC∶BC.