已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.
.设函数f(x)=-a+x+a,x∈(0,1],a∈R*.(1)若f(x)在(0,1]上是增函数,求a的取值范围;(2)求f(x)在(0,1]上的最大值.
已知数列Sn为该数列的前n项和,计算得观察上述结果,推测出Sn(n∈N*),并用数学归纳法加以证明.
求证:
已知函数 .(1)若函数的图象过原点,且在原点处的切线斜率是,求的值;(2)若函数在区间上不单调,求的取值范围.
(本小题满分14分)已知A(-1,2)为抛物线C: y=2x2上的点,直线过点A,且与抛物线C 相切,直线:x=a(a≠-1)交抛物线C于B,交直线于点D.(1)求直线的方程.(2)设的面积为S1,求及S1的值.(3)设由抛物线C,直线所围成的图形的面积为S2,求证S1:S2的值为与a无关的常数.