设平面上向量=(cosα,sinα) (0°≤α<360°),=(-,).(1)试证:向量与垂直;(2)当两个向量与的模相等时,求角α.
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称. (1)求椭圆E的离心率; (2)判断直线与圆的位置关系,并说明理由; (3)若圆的面积为,求圆的方程.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3. (1)求证:AC⊥DE; (2)求四棱锥P-ABCD的体积.
已知函数. (1)设,且,求的值; (2)在△ABC中,AB=1,,且△ABC的面积为,求sinA+sinB的值.
已知集合,若该集合具有下列性质的子集:每个子集至少含有2个元素,且每个子集中任意两个元素之差的绝对值大于1,则称这些子集为子集,记子集的个数为. (1)当时,写出所有子集; (2)求; (3)记,求证:
已知椭圆过点和点. (1)求椭圆的方程; (2)设过点的直线与椭圆交于两点,且,求直线的方程.