(满分12分)设是抛物线(p>0)的内接正三角形(为坐标原点),其面积为;点M是直线:上的动点,过点M作抛物线的切线MP、MQ,P、Q为切点.(1)求抛物线的方程;(2)直线PQ是否过定点,若过定点求出定点坐标;若不过定点,说明理由;(3)求MPQ面积的最小值及相应的直线PQ的方程.
【原创】(本小题满分12分)设函数,其中为自然对数的底数. (Ⅰ) 时,求曲线在点处的切线方程; (Ⅱ)函数是的导函数,求函数在区间上的最小值.
【原创】(本小题满分14分)已知数列与满足,. (Ⅰ)若,求,; (Ⅱ)若,求证:; (Ⅲ)若,求数列的通项公式.
【原创】(本小题满分12分)如图,在三棱锥中,底面ABC,,AP=AC, 点,分别在棱上,且BC//平面ADE. (Ⅰ)求证:DE⊥平面; (Ⅱ)若PC⊥AD,且三棱锥的体积为8,求多面体ABCED的体积.
【改编】(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
【原创】(本小题满分12分)已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求在上的最大值与最小值.