先化简,再求值:,其中,a=
(8分)如图,已知CA=CD,∠1=∠2. (1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是; (2)添加条件后证明:△ABC≌△DEC.
(本题满分9分) 如图11,已知抛物线与x 轴交于两点A、B,其顶点为C. (1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由; (2)求证:△ABC是等腰直角三角形; (3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
(本题满分9分)如图9,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD. (1)当△APC与△PBD的面积之生取最小值时,AP=;(直接写结果) (2)连结AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由; (3)如图10,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)
(本题满分9分) 如图8,等腰梯形ABCD中,AB∥CD,AD=BC.将△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合. (1)点C是否在以AB为直径的圆上?请说明理由; (2)当AB=4时,求此梯形的面积.