(本小题满分13分)设函数对任意的实数,都有,且当时,。(1)若时,求的解析式;(2)对于函数,试问:在它的图象上是否存在点,使得函数在点处的切线与平行。若存在,那么这样的点有几个;若不存在,说明理由。(3)已知,且 ,记,求证: 。
在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,每个工作台上有若干名工人.现要在与之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短. (1)若每个工作台上只有一名工人,试确定供应站的位置; (2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
奇函数的定义域为,其中为指数函数且过点(2,9). (1)求函数的解析式; (2)若对任意的,不等式恒成立,求实数的取值范围.
已知,其中. (1)求证:与互相垂直; (2)若与的长度相等,求.
已知函数(为常数). (1)求函数的单调增区间; (2)若函数的图像向左平移个单位后,得到函数的图像关于轴对称,求实数的最小值.
已知点在由不等式组确定的平面区域内,为坐标原点,,试求的最大值.