已知函数其中常数(Ⅰ)当时,求函数的单调递增区间;(Ⅱ) 当时,若函数有三个不同的零点,求m的取值范围;(Ⅲ)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标,若不存在,说明理由。
第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。 (I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少? (Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。
已知等差数列满足:. (Ⅰ)求的通项公式; (Ⅱ)若(),求数列的前n项和.
已知函数. (1)求函数的最小值; (2)若≥0对任意的恒成立,求实数的值; (3)在(2)的条件下,证明:
已知双曲线与圆相切,过的左焦点且斜率为的直线也与圆相切. (1)求双曲线的方程; (2)是圆上在第一象限内的点,过且与圆相切的直线与的右支交于、两点,的面积为,求直线的方程.
甲、乙两名同学在5次英语口语测试中的成绩统计如下面的茎叶图所示. (1)现要从中选派一人参加英语口语竞赛,从统计学角度,你认为派哪位学生参加更合适,请说明理由; (2)若将频率视为概率,对学生甲在今后的三次英语口语竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.