(本小题满分12分);已知过抛物线的焦点,斜率为的直线交抛物线于不同两点,且.(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值。
已知是定义在R上的偶函数,当时,(1)求的值;⑵求的解析式并画出简图; ⑶讨论方程的根的情况。(只需写出结果,不要解答过程).
已知, (1)设集合,请用列举法表示集合B;(2)求和.
已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.(Ⅰ)求抛物线C的方程;(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;(Ⅲ)过A、B分别作抛物C的切线且交于点M,求与面积之和的最小值.
(本小题满分分)已知函数.当时,函数取得极值.(I)求实数的值;(II)若时,方程有两个根,求实数的取值范围.
如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.(Ⅰ)若F为DE的中点,求证:BE//平面ACF;(Ⅱ)求直线BE与平面ABCD所成角的正弦值