如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,求证:(1)△AEP∽△DEB(2) CE2=ED·EP若点P在线段CE上或EC的延长线上时(如图2和图3),上述结论CE2=ED·EP还成立吗?若成立,请给出证明;若不成立,请说明理由.(图2和图3挑选一张给予说明即可)
在1、2、3、4、5这五个数中,先任意取一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b).求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
已知:如图,菱形ABCD中,∠A=60°,F是CD的中点,过C作CE∥BD,且DE⊥CE.求证:BF =DE.
解方程或不等式组(本题共有2小题,每小题4分,共8分)(1)解方程:x2-5x-4=0;(2)解不等式组:.
(本题共有2小题,每小题4分,共8分)(1)计算:()-1-(2015-)0―|-2|; (2)化简:-(a-2).
某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.