一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.(1)用列表法或画树状图法表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为m、n,若把m、n分别作为点P的横坐标和纵坐标,求点P(m,n)在双曲线y=上的概率.
如图,已知点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 在二次函数 y = a ( x ﹣ 2 ) 2 ﹣ 1 ( a > 0 ) 的图象上,且 x 2 ﹣ x 1 = 3 .
(1)若二次函数的图象经过点 ( 3 , 1 ) .
①求这个二次函数的表达式;
②若 y 1 = y 2 ,求顶点到 M N 的距离;
(2)当 x 1 ≤ x ≤ x 2 时,二次函数的最大值与最小值的差为 1 ,点 M , N 在对称轴的异侧,求 a 的取值范围.
如图,将矩形纸片 A B C D 折叠,使点 B 与点 D 重合,点 A 落在点 P 处,折痕为 E F .
(1)求证: △ P D E ≌ △ C D F ;
(2)若 C D = 4 c m , E F = 5 c m ,求 B C 的长.
因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是 330 k m ,货车行驶时的速度是 60 k m / h .两车离甲地的路程 s ( k m ) 与时间 t ( h ) 的函数图象如图.
(1)求出 a 的值;
(2)求轿车离甲地的路程 s ( k m ) 与时间 t ( h ) 的函数表达式;
(3)问轿车比货车早多少时间到达乙地?
如图,在 6 × 6 的方格纸中,点 A , B , C 均在格点上,试按要求画出相应格点图形.
(1)如图1,作一条线段,使它是 A B 向右平移一格后的图形;
(2)如图2,作一个轴对称图形,使 A B 和 A C 是它的两条边;
(3)如图3,作一个与 △ A B C 相似的三角形,相似比不等于 1 .
某校为了解学生在“五•一”小长假期间参与家务劳动的时间 t (小时),随机抽取了本校部分学生进行问卷调查.要求抽取的学生在A,B,C,D,E五个选项中选且只选一项,并将抽查结果绘制成如下两幅不完整的统计图,请根据图中信息回答问题:
(1)求所抽取的学生总人数;
(2)若该校共有学生 1200 人,请估算该校学生参与家务劳动的时间满足 3 ≤ t < 4 的人数;
(3)请你根据调查结果,对该校学生参与家务劳动时间的现状作简短评述.