为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)此次被调查的学生共 人;(2)补全条形统计图;(3)扇形统计图中,艺术类部分所对应的圆心角为 度;(4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有 人.
如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面积.
今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表. 对雾霾了解程度的统计表: 对雾霾的了解程度 百分比 A.非常了解 5% B.比较了解 m C.基本了解 45% D.不了解 n 请结合统计图表,回答下列问题. (1)本次参与调查的学生共有 人,m= ,n= ; (2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度; (3)请补全条形统计图.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3),△AOB关于y轴对称的图形为△A1OB1. (1)画出△A1OB1并写出点B1的坐标为 ; (2)写出△A1OB1的面积为 ; (3)点P在x轴上,使PA+PB的值最小,写出点P的坐标为 .
如图,▱ABCD中,点E、F分别在边AD、BC上,且AE=CF,连接BE、DF.求证:BE∥DF.
将正比例函数y=2x的图象沿y轴平移后,恰好经过点A(2,3),求平移后的函数解析式.