R M O 1 O 2 如图半径分别为 m , n ( 0 < m < n ) 的两圆 ⊙ O 1 和 ⊙ O 2 相交于 P , Q 两点,且点 P ( 4 , 1 ) ,两圆同时与两坐标轴相切, ⊙ O 1 与 x 轴, y 轴分别切于点 M ,点 N , ⊙ O 2 与x轴, y 轴分别切于点 R ,点 H . (1)求两圆的圆心 O 1 , O 2 所在直线的解析式; (2)求两圆的圆心 O 1 , O 2 之间的距离 d ; (3)令四边形 P O 1 Q O 2 的面积为 S 1 ,四边形RMO1O2的面积为 S 2 . 试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为 s 1 - s 2 2 d 的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.
如图,直线 y = 1 2 x + 1 与 x 轴交于点 A ,点 A 关于 y 轴的对称点为 A ′ ,经过点 A ′ 和 y 轴上的点 B ( 0 , 2 ) 的直线设为 y = k x + b .
(1)求点 A ′ 的坐标;
(2)确定直线 A ′ B 对应的函数表达式.
如图,在 R t △ A B C 中, ∠ B = 90 ° , C D ∥ A B , D E ⊥ A C 于点 E ,且 C E = A B .求证: △ C E D ≌ △ A B C .
计算: ( - 2022 ) 0 + 6 × ( - 1 2 ) + 8 ÷ 2 .
如图,以 A B 为直径的 ⊙ O 与 A H 相切于点 A ,点 C 在 A B 左侧圆弧上,弦 C D ⊥ A B 交 ⊙ O 于点 D ,连结 A C , A D .点 A 关于 C D 的对称点为 E ,直线 C E 交 ⊙ O 于点 F ,交 A H 于点 G .
(1)求证: ∠ C A G = ∠ A G C ;
(2)当点 E 在 A B 上,连结 A F 交 C D 于点 P ,若 EF CE = 2 5 ,求 DP CP 的值;
(3)当点 E 在射线 A B 上, A B = 2 ,以点 A , C , O , F 为顶点的四边形中有一组对边平行时,求 A E 的长.
如图,已知点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 在二次函数 y = a ( x ﹣ 2 ) 2 ﹣ 1 ( a > 0 ) 的图象上,且 x 2 ﹣ x 1 = 3 .
(1)若二次函数的图象经过点 ( 3 , 1 ) .
①求这个二次函数的表达式;
②若 y 1 = y 2 ,求顶点到 M N 的距离;
(2)当 x 1 ≤ x ≤ x 2 时,二次函数的最大值与最小值的差为 1 ,点 M , N 在对称轴的异侧,求 a 的取值范围.