学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD的坡比是1:3(即为CD与BC的长度之比).A,D两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.
(本题8分)如图,在平行四边形ABCD中,∠D=60°,以AB为直径作⊙O,已知AB=10,AD=m.(1)求O到CD的距离(用含m的代数式表示);(2)若m=6,通过计算判断⊙O与CD的位置关系;(3)若⊙O与线段CD有两个公共点,求m的取值范围.
(本题8分)如图,△ABC内接于⊙O,BC是⊙O的直径,OE⊥AC,垂足为E,过点A作⊙O的切线与BC的延长线交于点D,sinD= ,OD=20.(1)求∠ABC的度数;(2)连接BE,求线段BE的长
(本题8分)如图,在一块三角形区域ABC中,∠C=90°,边AC=8m,BC=6m,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.(1)求△ABC中AB边上的高h;(2)设DG=x,水池DEFG的面积为S,求S关于x的函数关系式,当x取何值时,水池DEFG的面积S最大?
(本题8分)水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:(1)坝底AB的长;(2)迎水坡BC的坡比.
(本题6分)小英过生日,同学们为她设置了一个游戏:把三个相同的乒乓球分别标上了1、2、3,放进一个盒子摇匀,另外拿两个相同的乒乓球也分别标上1、2,放进另外一个盒子里,现从两个盒子分别抽出1个球. (1) 用画树状图或列表的方法列出所有可能的结果; (2)若两个球的数字之积为奇数,则小英唱歌,若两个球的数字之积为偶数,则小英跳舞.问:小英唱歌的概率大还是跳舞的概率大?