如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.(1)求证:OF•DE=OE•2OH;(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)
先化简,然后从的范围内选取一个合适的整数作为的值代入求值.
(1)计算:4cos45°+(π+3)0-+; (2)解不等式组:,并把解集在数轴上表示出来.
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A开始沿AD边向D以1cm/s的速度移动,点Q从点C开始沿CB边向B以2cm/s的速度移动,如果P、Q分别从A、C同时出发,设移动的时间为t(s),求: (1)t为何值时,四边形PQCD为平行四边形; (2)t为何值时,四边形ABQP为矩形; (3)t为何值时,梯形PQCD是等腰梯形。
某数学兴趣小组在本校九年级学生中以“你最喜欢的一项体育运动”为主题进行了抽样调查,并将调查结果绘制成如图图表:
请根据图表中的信息完成下列各题: (1)本次共调查学生名; (2)a=,表格中五个数据的中位数是; (3)在扇形图中,“跳绳”对应的扇形圆心角是°; (4)如果该年级有450名学生,那么据此估计大约有人最喜欢“乒乓球”.
如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点. (1)试说明BE=CD; (2)请用一句话叙述由第(1)小题得出的结论.