某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试的平均分;(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
(本小题满分12分).已知椭圆的中心在原点,焦点在轴上,离心率,一 条准线的方程为(Ⅰ)求椭圆的方程;(Ⅱ)设,直线过椭圆的右焦点为 且与椭圆交于、两点,若,求直线的方程
(本小题满分12分).设正项数列的前项和为,满足,.(Ⅰ)求数列的通项公式;(Ⅱ)设,证明:
(本小题满分12分).如图,在直角梯形中,,,且,现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点 (I) 求证: ∥平面; (Ⅱ)求证: 平面; (III) 求二面角的大小.
(本小题满分12分).在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球, 现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等 (I)求取出的两个球上标号为相邻整数的概率; (II)求取出的两个球上标号之和能被3整除的概率.
(本小题满分12分).已知, 函数的最小正周期为( 其中为正常数,) (I)求的值和函数的递增区间; (II)在△中,若,且,求