如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A.B.C.D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?
如图,已知两条直线a∥b,直线a、b间的距离为h,点M、N在直线a上,MN=x;点P在直线b上,并且x+h=40. (1)记△PMN的面积为S, ①求S与x的函数关系,并求出MN的长为多少时△PMN的面积最大?最大面积是多少? ②当△PMN的面积最大时,能求出∠PMN的正切值吗?为什么? (2)请你用尺规作图的方法确定△PMN的周长最小时点P的位置(要求不写作法,但保留作图痕迹);并判断△PMN的形状; (3)请你在(2)②中得到的△PMN内求一点P,使得AP+AM+AN的和最小,求出AP+AM+AN和的最小值.
在学统计知识时,老师留的作业是:“请联系自己身边的事物,用所学的统计知识编制一道统计题.”小明就以他们小区的超市每天卖面包的情景编制了如下题目: 某小区超市一段时间每天订购80个面包进行销售,每售出1个面包获利润0.5元,未售出的每个专损0.3元. (1)若今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,写出y与x的函数关系式; (2)小明连续m天对该超市的面包销量进行统计,并制成了频数分别直方图(每个组距包含左边的数,但不包含右边的数)和扇形统计图,如图1、图2所示,请根据两图提供的信息计算在m天内日销售利润少于32元的天数; (3)如图(2)中m天内日销售面包个数在70≤x<80这个组内的销售情况如下表:
请计算该组内平均每天销售面包的个数.
小锋家有一块四边形形状的空地(如图,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行. 小锋设计了两种方案,如图1和图2所示. (1)请你通过计算说明小锋的两种设计方案是否合理; (2)请你利用图3再设计一种有别于小锋的可行性方案,并说明理由. (参考数据:sin53°=0.8,cos53°=0.6,tan53°=)
(1)已知一元二次方程x2-4x+m=0有唯一实数根,求的值; (2)小明是这样完成“作∠MON的平分线”这项作业的: “如图,①以O为圆心,任意长为半径画弧,分别交OM,ON于点A,B;②分别作线段OA,OB的垂直平分线l1,l2(垂足分别记为C,D),记l1与l2的交点为P;③作射线OP,则射线OP为∠MON的平分线.” 你认为小明的作法正确吗?如果正确,请你给证明,如果不正确,请指出错在哪里.
阅读下列材料: 解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法: 解:∵x﹣y=2,又∵x>1,∴y+2>1y>﹣1 又y<0,∴﹣1<y<0.…① 同理得:1<x<2.…② 由①+②得﹣1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2. 请按照上述方法,完成下列问题: 已知关于x、y的方程组的解都为正数. (1)求a的取值范围; (2)已知a﹣b=4,且a>1,求a+b的取值范围; (3)已知a﹣b=m(m是大于0的常数),且b≤1,求2a+b最大值.(用含m的代数式表示)