如图,已知 ,B(-2 ,-4)是一次函数y=kx+b的图象和反比例函数的图象的交点.(1)求反比例函数的解析式;(2) 求一次函数的解析式。
(.天津市,第22题,10分)(本小题10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一直线上. 小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°. 已知点D到地面的距离DE为1.56m,EC =21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.
(.重庆市B卷,第25题,12分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证:;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:.
(.重庆市B卷,第20题,7分)如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB=EF,AB∥EF.求证:BC=FD
(.重庆市A卷,第25题,12分)如图1,在△ABC中,ACB=90°,BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点.DH⊥AC,垂足为H,连接EF,HF。 2图1 图2 (1)如图1,若点H是AC的中点,AC=,求AB,BD的长。 (2)如图1,求证:HF=EF。 (3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由。
(.重庆市A卷,第20题,7分)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,B=E。求证:ADB=FCE.