对某校高三年级学生参加社区服务次数进行统计, 随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中、及图中的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间 内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
(14分)己知函数f (x)=ex,xR (1)求 f (x)的反函数图象上点(1,0)处的切线方程。 (2)证明:曲线y=f(x)与曲线y=有唯一公共点; (3)设,比较与的大小,并说明理由。
已知函数f(x)=x3+ax-2,(aR). (l)若f(x)在区间(1,+)上是增函数,求实数a的取值范围; (2)若,且f(x0)=3,求x0的值; (3)若,且在R上是减函数,求实数a的取值范围。
如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2 (1)求证:ADB'D; (2)求三棱锥A'-AB'D的体积。
某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60), [60,70), [70,80), [80,90), [90,100), 分别加以统计,得到如图所示的频率分布直方图。 (1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数; (2)若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”;“25周岁以下组”中日平均生产不足60件的称为“菜鸟”。从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望。(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件)。
已知锐角三角形ABC中,向量,,且。 (1)求角B的大小; (2)当函数y=2sin2A+cos()取最大值时,判断三角形ABC的形状。