(满分12分)长方体中,,分别是、中点。(1)求证:; (2)求二面角的正切值。
平面直角坐标系中有一个△ABC,角A,B,C所对应的边分别为,已知坐标原点与顶点B重合,且,,=,且∠A为锐角。 (1)求角A的大小; (2)若,求实数的取值范围; (3)若,顶点A,,求△ABC的面积。
若关于的不等式的解集是,的定义域是,若,求实数的取值范围。
已知命题: 表示焦点在轴上的椭圆,命题:表示双曲线。若或为真,且为假,求的取值范围。
设函数,,已知为函数的极值点 (1)求函数在上的单调区间,并说明理由. (2)若曲线在处的切线斜率为-4,且方程有两个不相等的负实根,求实数的取值范围.
已知函数,且能表示成一个奇函数和一个偶函数的和. (1)求和的解析式. (2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题、有且仅有一个是真命题,求实数的取值范围. (3)在(2)的条件下,比较和的大小.