(满分12分)长方体中,,分别是、中点。(1)求证:; (2)求二面角的正切值。
已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。 (1)求、的通项公式;; (2)若,试证数列为等比数列,并求的通项公式。 (3).
已知函数f(x)=ln(1+x)-. (1)求f(x)的极小值; (2)若a、b>0,求证:lna-lnb≥1-.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
已知是定义在 上的增函数,且对任意的都满足. (Ⅰ)求的值;(Ⅱ)若,证明; (Ⅲ)若,解不等式 .
设命题函数是上的减函数,命题函数,的值域为,若“且”为假命题,“或”为真命题,求实数的取值范围.