某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是 .(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
在下面的网格图中,每个小正方形的边长均为1个单位,在. (1)试作出以A为旋转中心,沿顺时针方向旋转后的图形. (2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标. (3)作出关于原点对称的图形,并写出三点的坐标.
某商场将某种商品的售价从原来的每件40元,经两次调价后调至每件32.4元. (1)若该商场两次降价率相同,求这个降价率; (2)经调查,该商品每降价0.2元,即可多售出10件,若该商品原来每月可售500件,那么两次调价后,每月可售出该商品多少件?
已知:关于x的方程 (1)当m取什么值时,原方程没有实数根; (2)对m选取一个你喜欢的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,不动,将绕O点顺时针转. (1)试分别说明是多少度时,点F在外部、BC上、内部(不证明)? (2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明).
小红按某种规律写出4个方程:①;②;③;④. (1)上述四个方程根的情况如何?为什么? (2)按此规律,请你写出一个两根都为整数的方程,并解这个方程.