已知△ABC中,AB=,AC=,BC=6.(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).
《九章算术》是我国古代的数学专著,几名学生要凑钱购买 1 本.若每人出 8 元,则多了 3 元;若每人出 7 元,则少了 4 元.问学生人数和该书单价各是多少?
如图,已知 ∠ A O C = ∠ B O C ,点 P 在 O C 上, P D ⊥ O A , P E ⊥ O B ,垂足分别为 D , E .求证: △ O P D ≌ △ O P E .
先化简,再求值: a + a 2 - 1 a - 1 ,其中 a = 5 .
解不等式组: 3 x - 2 > 1 x + 1 < 3 .
(1)发现:如图①所示,在正方形 A B C D 中, E 为AD边上一点,将 △ A E B 沿 B E 翻折到 △ B E F 处,延长 E F 交 C D 边于 G 点.求证: △ B F G ≌ △ B C G ;
(2)探究:如图②,在矩形 A B C D 中, E 为 A D 边上一点,且 A D = 8 , A B = 6 .将 △ A E B 沿 B E 翻折到 △ B E F 处,延长 E F 交 B C 边于 G 点,延长 B F 交 C D 边于点 H ,且 F H = C H ,求 A E 的长.
(3)拓展:如图③,在菱形 A B C D 中, A B = 6 , E 为 C D 边上的三等分点, ∠ D = 60 ° .将 △ A D E 沿 A E 翻折得到 △ A F E ,直线 E F 交 B C 于点 P ,求 P C 的长.