如图,是的直径,点在的延长线上,弦垂足为,连接(I)求证:是的切线;(II)若半径为4,求的长.
如图,∠ACB=∠CDE=90°,B是CE的中点,∠DCE=30°,AC=CD.求证:AB∥DE.
甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度.(2)求甲船在逆流中行驶的路程.(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式.(4)求救生圈落入水中时,甲船到A港的距离.【参考公式:船顺流航行的速度船在静水中航行的速度+水流速度,船逆流航行的速度船在静水中航行的速度水流速度.】
在一平直河岸同侧有两个村庄,到的距离分别是3km和2km,.现计划在河岸上建一抽水站,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图(1)是方案一的示意图,设该方案中管道长度为,且(其中于点);图(2)是方案二的示意图,设该方案中管道长度为,且(其中点与点关于对称,与交于点).(1)观察计算在方案一中, km(用含的式子表示);在方案二中,组长小宇为了计算的长,作了如图(3)所示的辅助线,请你按小宇同学的思路计算, km(用含的式子表示).(2)探索归纳①当时,比较大小:(填“>”、“=”或“<”);当时,比较大小:(填“>”、“=”或“<”);②请你参考方框中的方法指导,就(当时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?
已知: 如图, AB是⊙O的直径,⊙O过AC的中点D, DE切⊙O于点D, 交BC于点E. (1)求证: DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.
如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题:(1) 用签字笔画AD∥BC(D为格点),连接CD;线段CD的长为 ;(2) 请你在的三个内角中任选一个锐角,若你所选的锐角是 ,则它所对应的正弦函数值是 .(3) 若E为BC中点,则tan∠CAE的值是 .