如图1, ∠ A C B = 45 ° , B C = 3 ,过动点 A 作 A D ⊥ B C ,垂足 D 在线段 B C 上且异于点 B ,连接 A B ,沿 A D 将 △ A B D 折起,使 ∠ B D C = 90 ° (如图2所示). (Ⅰ)当 B D 的长为多少时,三棱锥 A - B C D 的体积最大; (Ⅱ)当三棱锥 A - B C D 的体积最大时,设点 E , M 分别为棱 B C , A C 的中点,试在棱 C D 上确定一点 N ,使得 E N ⊥ B M ,并求 E N 与平面 B M N 所成角的大小.
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点. (1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.
如图,在锥体PABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分别是BC、PC的中点.证明:AD⊥平面DEF.
由平面α外一点P引平面的三条相等的斜线段,斜足分别为A、B、C,O为△ABC的外心,求证:OP⊥α.
在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点. (1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点F,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由.
在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1. (1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.