如图1, ∠ A C B = 45 ° , B C = 3 ,过动点 A 作 A D ⊥ B C ,垂足 D 在线段 B C 上且异于点 B ,连接 A B ,沿 A D 将 △ A B D 折起,使 ∠ B D C = 90 ° (如图2所示). (Ⅰ)当 B D 的长为多少时,三棱锥 A - B C D 的体积最大; (Ⅱ)当三棱锥 A - B C D 的体积最大时,设点 E , M 分别为棱 B C , A C 的中点,试在棱 C D 上确定一点 N ,使得 E N ⊥ B M ,并求 E N 与平面 B M N 所成角的大小.
(原创)已知{}是公比为q的等比数列,且成等差数列. (1)求q的值; (2)设数列的前项和为,试判断是否成等差数列?说明理由.
已知函数定义域是,且,,当时,. (1)证明:为奇函数; (2)求在上的表达式; (3)是否存在正整数,使得时,有解,若存在求出的值,若不存在说明理由.
(原创)已知焦点在轴上,中心在坐标原点的椭圆C经过点 (Ⅰ)求椭圆C的短轴长的取值范围; (Ⅱ)若椭圆C的离心率为,且直线分别切椭圆C与圆(其中)于A、B两点,求|AB|的最大值.
如图所示,在边长为12的正方形中,点在线段上,且,作,分别交于点,.作,分别交于点,.将该正方形沿折叠,使得与重合,构成如图的三棱柱. (1)求证:平面; (2)求四棱锥的体积.
(本小题满分15分)已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足. (1)求数列、的通项公式; (2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.