为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形。 根据上述操作得到的经验完成下列探究活动:(本题12分) 探究一:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的等量关系,并证明你的结论; 探究二:如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB。若AB=5,CF=1,求DF的长度。
△中,为边的中点,过点分别作∥交于点,∥交于点.(本题10分) (1)证明:△≌△; (2)如果给△添加一个条件,使四边形成为菱形,则该条件是; 如果给△添加一个条件,使四边形成为矩形,则该条件是. (均不再增添辅助线) 请选择一个结论进行证明.
计算