先阅读下面解方程的过程,然后回答后面的问题。解:将原方程整理为:(第一步)方程两边同除以(x-1)得: (第二步)去分母,得:2(x+1)+2x=5x(第三步)解这个方程,得:x=2(第四步)在上面的解题过程中:第三步变形的依据是 出现错误的一步是 上述解题过程缺少的一步是 写出这个方程的完整的解题过程
化简:;
计算:(-3)0-()-1+
如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.(1)求这个二次函数的表达式;(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度;(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
点D是⊙O的直径CA延长线上一点,点B在⊙O上,BD是⊙O的切线,且AB=AD.(1)求证:点A是DO的中点.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.
若一个矩形的短边与长边的比值为(黄金分割数),我们把这样的矩形叫做黄金矩形.(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.