(本小题满分14分)已知椭圆以 为焦点,且离心率. (Ⅰ)求椭圆的方程;(Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。(Ⅲ)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。
抛掷两颗质地均匀的骰子,计算: (1)事件“两颗骰子点数相同”的概率; (2)事件“点数之和小于7”的概率; (3)事件“点数之和等于或大于11”的概率。
对甲、乙两种商品重量的误差进行抽查,测得数据如下(单位:mg): 甲:13 15 14 14 9 14 21 9 10 11 乙:10 14 9 12 15 14 11 19 22 16 (1)画出样本数据的茎叶图,并指出甲、乙两种商品重量误差的中位数; (2)计算甲种商品重量误差的样本方差; (3)现从重量误差不低于15的乙种商品中随机抽取2件,求重量误差为19的商品被抽中的概率.
已知函数 (1)求函数的定义域; (2)求的值;
(1)解关于的不等式; (2)若关于的不等式有解,求实数的取值范围.
已知直线的参数方程为(t为参数),曲线C的参数方程为(为参数). (1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系; (2)设点Q是曲线C上的一个动点,求点Q到直线的距离的最小值与最大值.