如图所示是某水产养殖厂的养殖大网箱的平面图,四周的实线为网衣,为避免混养,(1)若大网箱的面积为108平方米,每个小网箱的横边、纵边设计为多少米时,才能使围成的网箱中筛网的总长度最小?(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的横、纵边分别为多少米时,可使总造价最低?
研究集合,,之间的关系
若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3),(1)求当x∈[1,2]时,f(x)的解析式;(2)定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.
已知函数,若存在,则称是函数的一个不动点,设(Ⅰ)求函数的不动点;(Ⅱ)对(Ⅰ)中的二个不动点、(假设),求使恒成立的常数的值;
已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式
已知集合A={x| x2-3x-10≤0},B={x| m+1≤x≤2m-1},若AB且B≠,求实数m的取值范围。